

Elements of experimental design

... is it really that important that the experiment is well planned? Gdańsk, May 13, 2023

Peter Grešner, PhD.

Centre of Biostatistics and Bioinformatics Analyses Division of Translational Oncology Medical University of Gdansk

peter.gresner@gumed.edu.pl

Author's background...

1997 programming class high school (Slovak Republic)

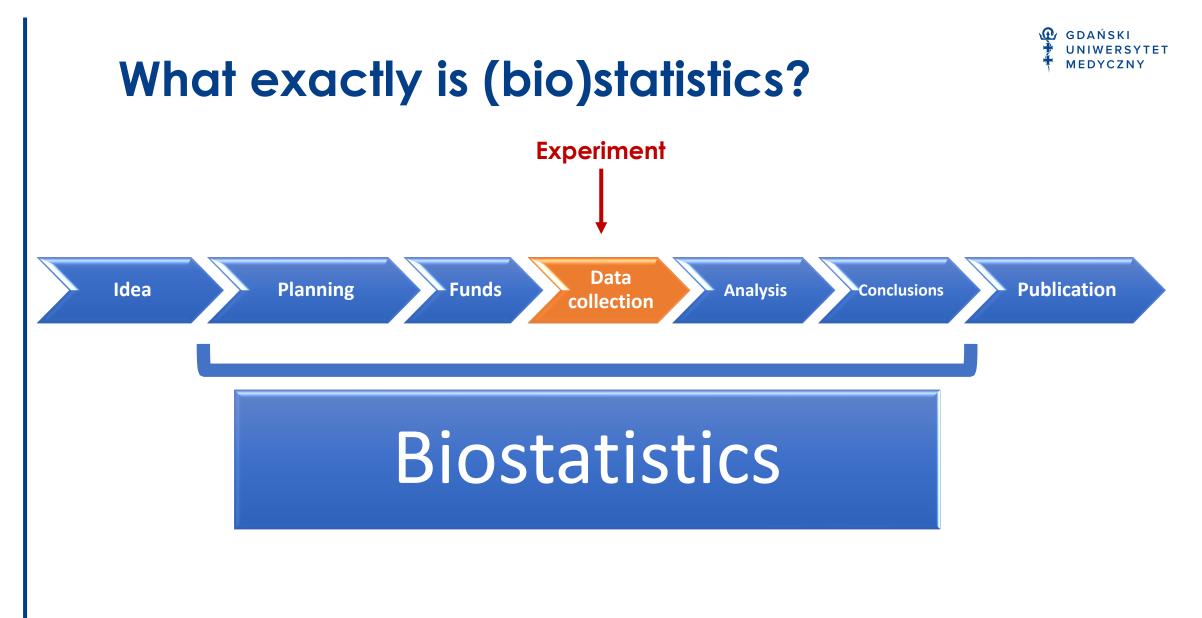
2002 biomedical physics (MSc)

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic

2006 biophysics (PhD)

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovak Republic

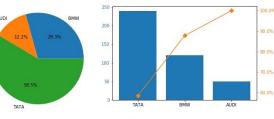
2006 medical statistician

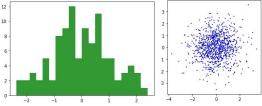

Military Teaching Hospital No.2, Medical University of Lodz, Poland

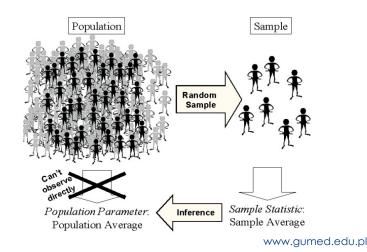
2006 – 2020 postdoctoral fellow [...] adjunct associate professor Nofer Institute of Occupational Medicine, Lodz, Poland

2020 – ... senior biostatistician Medical University of Gdansk, Poland

Mostly, it's not done properly...


- approximately 60% of original papers in the field of biomed/pharm contain statistical errors(De Muth 1999)
 - improper experimental design and **planning**
 - poorly formulated research hypothesis
 - incorrectly estimated sample size (or no estimation at all)
 - misused mean & SD
 - wrong selection of **parametric/non-parametric** tests
 - incorrect use of paired/unpaired tests
 - using standard error (SE) instead of standard deviation (SD)
 - using multiple t-tests as an extension of the analysis of variance method
 - using the chi² test and Fisher's exact test




Biostatistics – what are our options?

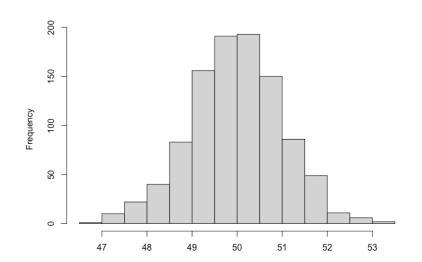
Descriptive statistics

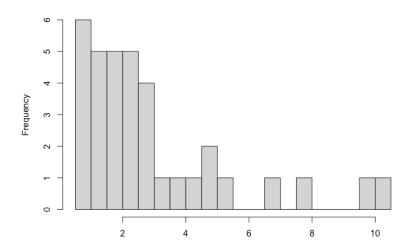
- characteristics of collected dataset
- answers questions:
 - how to describe/present the collected data?
 - what is the most representative value?
 - what are the extremes?
 - what is the spread of data?
 - how to compare data to those from similar sets?
- not going "beyond the scope" of the collected data

Statistical inference

- a way of "generalizing"
- drawing conclusions about a population from which ONLY a small part (sample) has been analyzed

Descriptive statistics


Histogram


Measures of central tendency mode, mean (μ) , median

Measures of spread

range, quartiles (**Q**) variance (**s**), standard deviation (*σ*; **SD**; 68%; 95%) interquartile range (**IQR=Q3-Q1**; middle 50%)

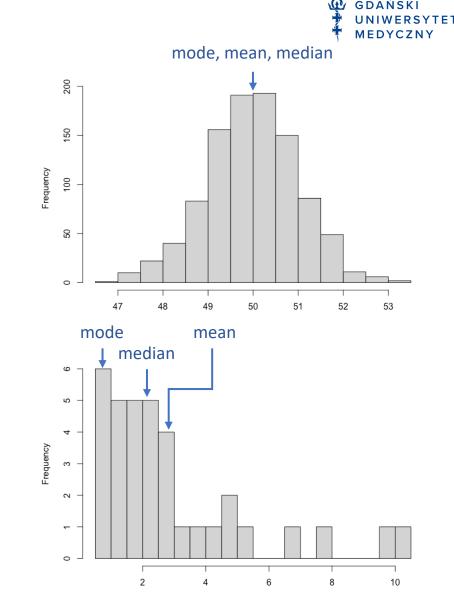
coefficient of variation [%] (σ / μ) quartile coefficient of dispersion [%] (IQR/(Q3+Q1))

Median vs. Mean

median

- the middle value in distribution
- 50% left / 50% right
- less sensitive to outliers/extreme
- only numerical data

mean (μ; ȳ)


- sum of all values divided by their number
- sensitive to outliers/extremes
- only numerical data

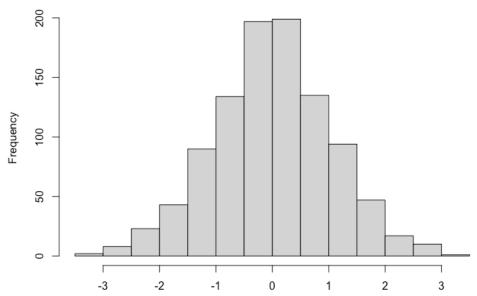
Normal distribution

mean & SD median & IQR

Non-normal distribution

median & IQR (only!)

Normal (Gaussian) distribution

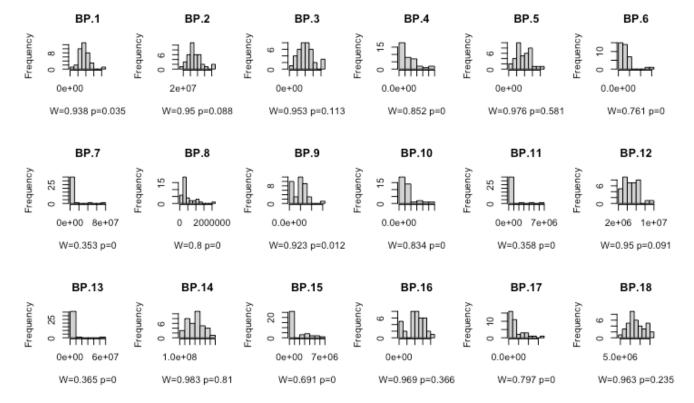

- the "bell"-shape, symmetrical around mean
- mathematically **fully** characterized by mean (μ) and standard deviation (σ)
- $\mu = 0; \sigma = 1; AUC = 1;$

Significance of normal distribution

- many biomedical parameters present normal distribution
- many statistical tests thus **assume normally distributed data** (if not met, the logic of analysis fails)

Central limit theorem

histogram of means from many nongaussian samples will present normal distribution



How to choose proper measures?

Always check your data first!

- visual inspection of histograms
- statistical tests for testing data normality
 - Shapiro-Wilk W test
 - Kolmogorov-Smirnov test
 - Lilliefors test

Statistical inference

Research hypothesis

A statement specifying the existence of some relationship, difference, mechanism, process, etc.

Statistical hypothesis

Redefinition of research hypothesis into a measurable form.

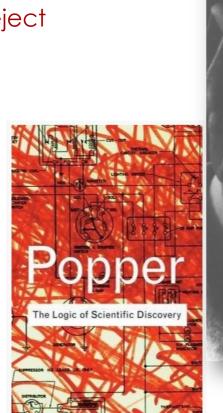
Hypothesis testing

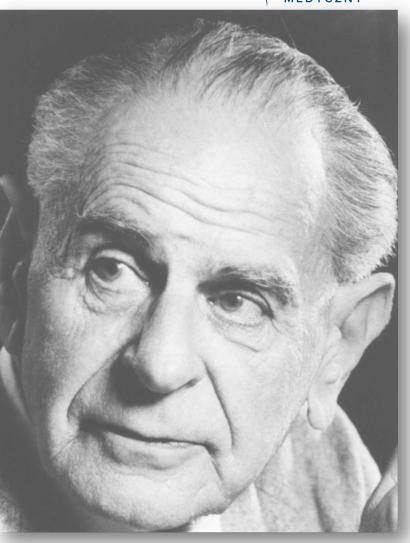
A sequence of steps allowing us to either accept or reject the hypothesis.

In order to do so, one has to follow the rules...

One ring to rule them all... ...and in the darkness bind them.

Statistical inference

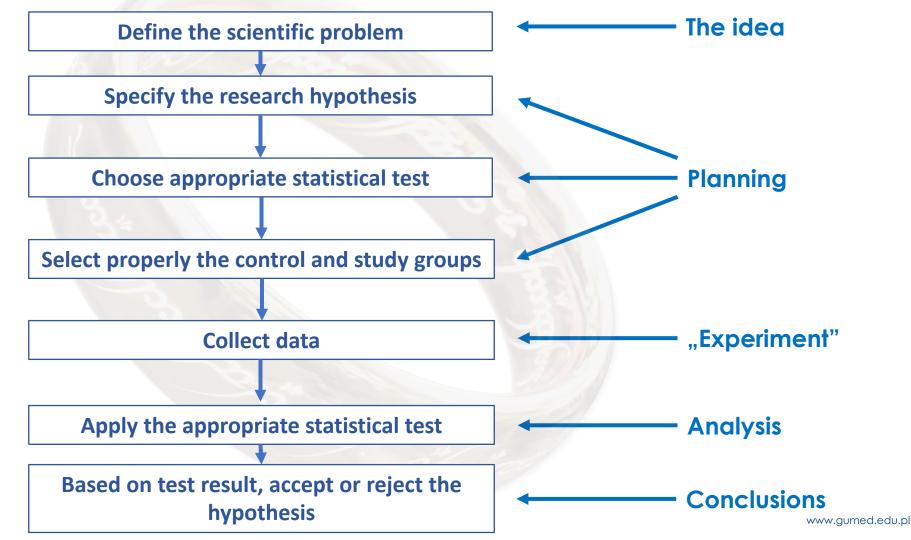

Sir Karl Raimund Popper (1902 – 1994)


Criterion of falsifiability

- the main scientific criterion
- In order to prove something, try to reject the negation thereof
- critical rationalism ("popperism")
- philosophy of science
- historical context of Eastern Block 🤓

Rules:

- study groups selection
- formulation of hypotheses
- hypothesis testing
- making decisions and drawing conclusion



www.gumed.edu.pl

GDAŃSKI UNIWERSYTEI

Statistical inference - workflow

Scientific problem & Hypotheses

Scientific problem

"Does the XY disease affect the patients' IQ?"

Statistical hypotheses

we want to check whether our data allows us to reject this hypothesis as untrue

The "null" hypothesis (H₀)

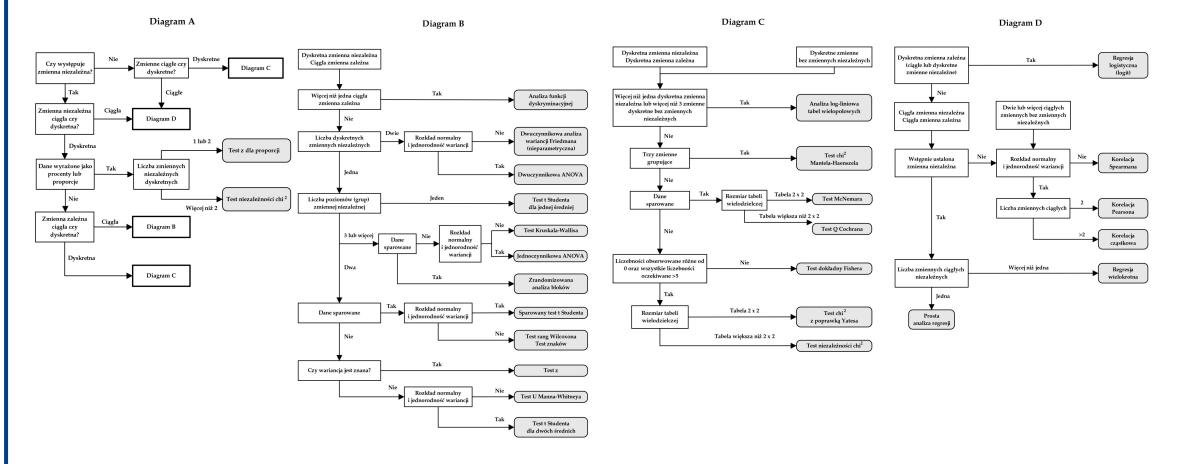
The average IQ of people with the XY disease does not differ from the one among healthy people (without the XY disease).

$$H_0: \overline{IQ_{XY}} = \overline{IQ_{healthy}}$$

The alternative hypothesis (H_A)

The average IQ of people with the XY disease differs from the one among healthy people (without the XY disease).

$$H_A: \overline{IQ_{XY}} \neq \overline{IQ_{healthy}}$$


Choosing appropriate statistical test

Not a trivial problem, many aspects need to be considered

- type of data: numerical (continuous, discrete) / categorical / proportions
- normality of the data
- dependent/independent variable
- data pairing
- data censoring (right censoring survival analysis)
- number of levels of categorical variables
- number of compared groups
- additional (confounding) factors
- experimental design
 - hierarchical design balanced/unbalanced design fixed/random effects
 - etc.

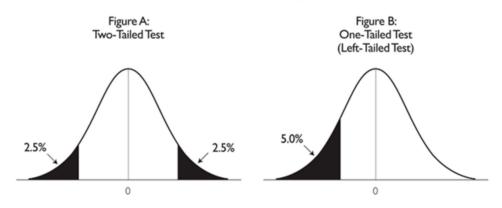
Choosing appropriate statistical test

Basic test characteristics

Parametric tests

- make several assumptions concerning the distribution of data
- if not met, their logic fails and provide unreliable results
- limited use but very "powerful" (general linear model, ANOVA, ...)

Nonparametric tests


- less or no assumptions concerning the data distribution and other characteristics
- more "universal"

One-tailed tests

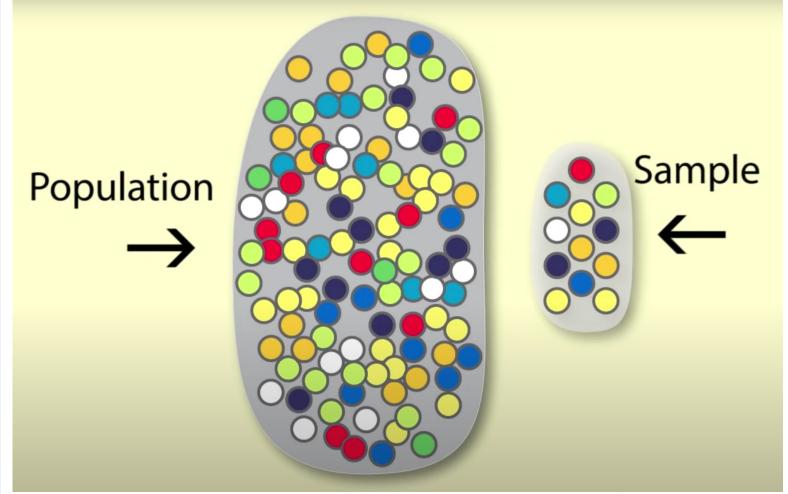
assume one specific change (decrease | increase)

Two-tailed tests

- assume change in general (decrease & increase)

Two-Tailed Versus One-Tailed Hyphothesis Tests

Parametric vs. non-parametric tests

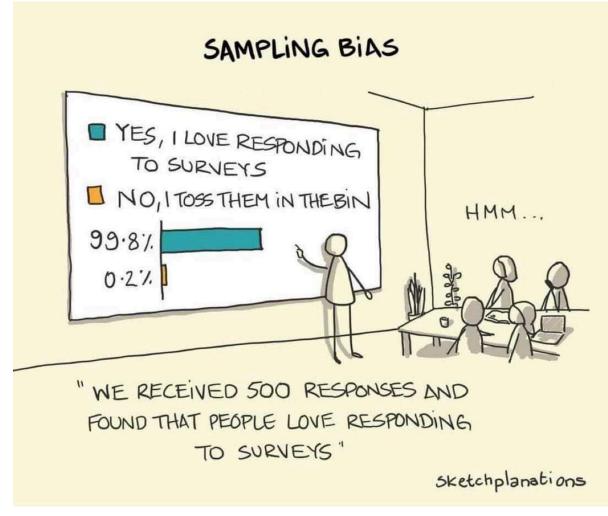

Parametric test	Non-Parametric equivalent
Paired t-test	Wilcoxon Rank sum Test
Unpaired t-test	Mann-Whitney U test
Pearson correlation	Spearman correlation
One way Analysis of variance	Kruskal Wallis Test

		Nominal	Categorical (>2 Categories)	Ordinal	Quantitative Discrete	Quantitative Non-Normal	Quantitative Normal
	Nominal	X ² or Fisher's	X ²	X ² -trend or Mann - Whitney	Mann- Whitney	Mann- Whitney or log-rank ^a	Student's <i>t</i> test
	Categorical (2>categories)	X2	X ²	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Kruskal- Wallis ^b	Analysis of variance ^c
Input Variable	Ordinal (Ordered categories)	X ² -trend or Mann - Whitney	e	Spearman rank	Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative Discrete	Logistic regression	e	e	Spearman rank	Spearman rank	Spearman rank or linear regression ^d
	Quantitative non-Normal	Logistic regression	e	e	e	Plot data and Pearson or Spearman rank	Plot data and Pearson or Spearman rank and linear regression
	Quantitative Normal	Logistic regression	e	e	e	Linear regression ^d	Pearson and linear regression

Outcome variable

https://www.healthknowledge.org.uk

Selection of study groups



- representative and appropriately selected groups
- inclusion/exclusion criteria (diseases, medications)
- certain degree of uncertainty
- sampling bias

Study size estimation

- how large should the study/control group be?
- ethical, financial, temporal, logistical aspects

Sampling bias

GDAŃSKI UNIWERSYTET MEDYCZNY

- sampling strategy, in which a certain members of population have higher or lower sampling probability
- if not accounted for during data analysis, it's effect can be erroneously attributed to the phenomenon under study
- healthy user bias (overestimating health of general population)
- **Berkson's fallacy** (underestimating health of general population)

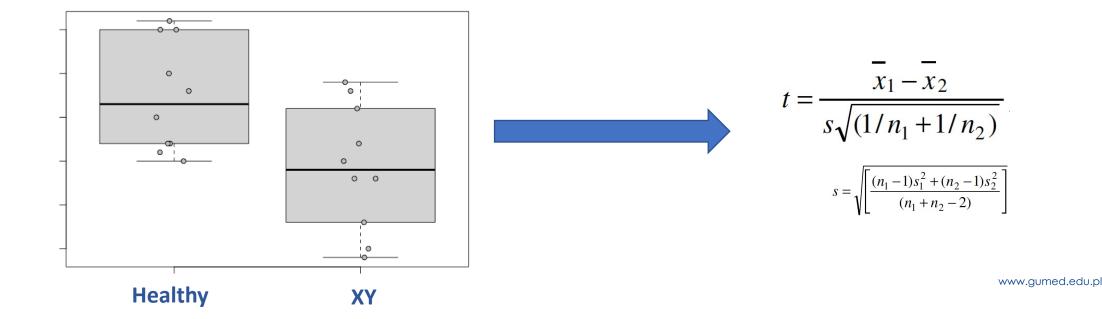
Study groups selection precautions

- completely randomly selected volunteers; is it even feasible? (control group searched within specific occupation, "healthy" hospital visitors)
- how to match the study and control groups in terms of age, when the examined disease appears only in certain age groups? Will it then be possible to exclude other factors influencing the examined parameters in the compared control group?? (centenarians)
- how to perform randomization if subjects representing the study group are only rarely encountered?
- how to conduct drug effect testing (placebo, single/double blind study, the "noninferiority" problem)

Data collection

Various types of experiments:

- basic research
- population studies
 - observational
 - cohort / case-control studies
 - cross-sectional / monitoring (longitudinal: prospective / retrospective)
 - interventional (experimental)
- clinical trials
- questionnaire studies
- independence, randomness of all observations



Hypothesis testing

statistical tests

- observed differences between the groups are just by chance or rather indicate a kind of regularity (pattern)
- transform observed differences into statistics

remember to check the data distribution first!

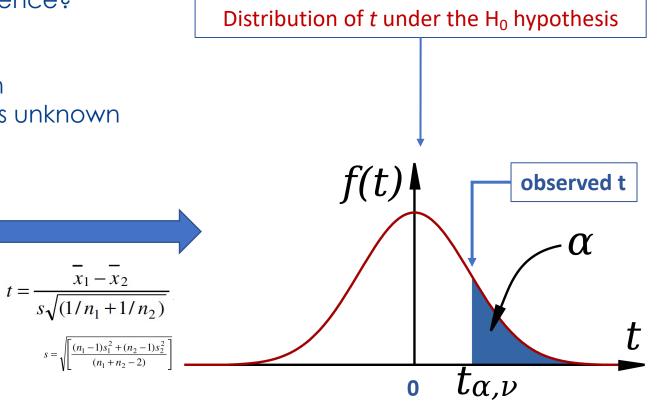
Hypothesis testing

Why calculate t statistic out of real difference?

Uncertainty

- exact distribution of IQ is unknown
- the representativeness of groups is unknown

0 i


0

0 0

0

XY

0

0

0

0 1

0

GDAŃSKI UNIWERSYTET

Making decisions

	Real world		
Test (experiment)	$\mathbf{x_1} = \mathbf{x_2}$	x ₁ ≠ x ₂	
result	(H ₀ is true)	(H _A is true)	
Reject H ₀	Type I error	Correct decision	
x₁≠x₂	(significance) α, p	(test power)	
Do not reject H_0 $\mathbf{x_1} = \mathbf{x_2}$	Correct decision (1- significance)	Type II error (1- test power)	

 $\alpha = 0.05; \alpha = 0.01$

Life Sciences

Physical sciences $\alpha = 0.0000003$ (Higg's boson)

The higher the test power, the better The lower the significance level, the better (?!?)

What is the result?

- the effect size (i.e. difference between means)
- level of significance (the degree of our (un)certainty)

Group size estimation

In order to generalize the study/control groups must be of required sizes.

- required study group size (n) depends on several parameters
 - statistical power (the ability to reject H_0 when it is false; 80%; z_β)
 - level of significance (the probability of rejecting H_0 when it is de facto true; 5%; z_{α})
 - effect size (i. e. assumed difference in mean values (δ))
 - assumed spread (e.g. variance; σ^2)

- larger the spread \rightarrow higher **n**
- smaller the difference \rightarrow higher **n**

Group size estimation

$$n \approx \frac{\sigma^2 (z_\beta + z_{\alpha/2})^2}{\delta^2}$$

- independent observations
- numerical data
- trying to prove the difference between groups

	musimy znać	równanie	
(a) istotność różnic 1. pojedyncza średnia	 <i>u, v</i> jak poniżej μ-μ₀ różnica między średnią badaną μ i średnią teoretyczną μ₀ (H₀) σ odchylenie standardowe 	$\frac{(u+v)^2 \sigma^2}{\left(\mu-\mu_0\right)^2}$	
2. pojedyncza częstość	μ częstość μ_0 wartość dla H $_0$ u, v jak poniżej	$\frac{\left(\boldsymbol{u}+\boldsymbol{v}\right)^{2}\boldsymbol{\mu}}{\left(\boldsymbol{\mu}-\boldsymbol{\mu}_{0}\right)^{2}}$	
3. pojedyncza proporcja	π proporcja $π_0$ wartość dla H ₀ <i>u, v</i> jak poniżej	$\frac{\{u\sqrt{[\pi(1-\pi)]} + v\sqrt{[\pi_0(1-\pi_0)]}\}^2}{(\pi-\pi_0)^2}$	
4. porównanie dwóch średnich (liczebność każdej grupy)	u, v jak poniżej μ_1 - μ_2 różnica między średnimi σ_1 , σ_2 odchylenie standardowe	$\frac{(u+v)^2(\sigma_1^2+\sigma_2^2)}{(\mu_1-\mu_2)^2}$	
5. porównanie dwóch częstości (liczebność każdej grupy)	u, v jak poniżej; μ_1, μ_2 częstości	$\frac{(u+v)^2(\mu_1+\mu_2)}{(\mu_1-\mu_2)^2}$	
	musimy znać	równanie	
6. porównanie dwóch proporcji (liczebność każdej grupy)	u, v jak poniżej; π_1, π_2 proporcja	$\frac{\{u\sqrt{[\pi_1(1-\pi_1)+\pi_2(1-\pi_2)]}+v\sqrt{[2\pi(1-\pi)]}\}^2}{(\pi_2-\pi_1)^2}$	
7. badanie typu case-control (liczebność każdej grupy)	π ₁ proporcja w grupie kontrolnej wystawiona na działanie czynnika	gdzie $\overline{\pi} = \frac{\pi_1 - \pi_2}{2}$ $\frac{\{u\sqrt{[\pi_1(1 - \pi_1) + \pi_2(1 - \pi_2)]} + v\sqrt{[2\pi(1 - \pi)]}\}^2}{(\pi_2 - \pi_1)^2}$	

Watała: Biostatystyka - wykorzystanie metod statystycznych w pracy badawczej w naukach biomedycznych. *a*-medica press, Bielsko-Biała, 2002.

✔ GDAŃSKI ✔ UNIWERSYTET ★ MEDYCZNY

What should you take from this part?

- 1. Plan your experiments properly (in cooperation with a specialist)
- 2. Check your data prior to analysis (if it meets assumptions of tests)
- 3. Use appropriate measures of centrality and spread
- 4. Don't be afraid to use other than parametric tests
- The p-value is not a result of experiment!
 It is the effect size (difference), while the p-value tells something about how certain you are when it comes to the effect size.
- 6. Contact CABiB if you need help

Selected practical issues

Group size estimation

- determine a number of factors a priori
 - the level of significance
 - statistical power of the test
 - the effect size
 - the dispersion measure (variance)

"to start from something is better than starting from nothing"

How to formulate the question concerning the group size?

🗶 " So how many subjects do I need to include in the study to obtain statistically significant difference?"

"Assuming the variability of data at the level of 25%, the level of statistical significance below 0.01, statistical power above 80% and the planned use of one-tailed Student's t-test, how many patients should be included in the study to show a 15% higher level of biomarker expression in the group subjected to treatment?"

" If the study and control groups include both 30 subjects per group, then assuming the variability data at the level of 25%, the significance level below 0.01, the statistical power above 80% and the planned use of one-tailed Student's t-test, how large an increase in the biomarker expression level will I be able to evaluate as statistically significant?"

What if we expect a non-Gaussian distribution of the data?

Group size estimation: two means

Required information:

- expected means (μ_1 ; μ_2)
- expected spreads (σ_1 ; σ_2)
- u-a value related to level of significance
- v a value related to statistical power of test

ignificance	u/z _{alfa/2}	u/z _{alfa}
0,1	1,6449	1,2816
0,05	1,9600	1,6449
0,01	2,5758	2,3263
0,0125	2,5000	2,2400
0,005	2,8070	2,5758
0,0024	3,0357	2,8202
0,00125	3,2272	3,0233
0,001	3,2905	3,0902
0,0001	3,8906	3,7190
0,00001	4,4172	4,2649
	* two-tailed	* one-tailed

$(u+v)^2(\sigma_1^2+\sigma_2^2)$
$(\mu_1 - \mu_2)^2$

power [%]	u/z _{beta}
60	0,2533
70	0,5244
75	0,6745
80	0,8416
85	1,0364
90	1,2816
95	1,6449
* one-sided	value

Group size estimation: three means

Required information:

- expected means $(\mu_1; \mu_2; \mu_3)$
- expected spreads ($\boldsymbol{\sigma}_1$; $\boldsymbol{\sigma}_2$; $\boldsymbol{\sigma}_3$)
- u-a value related to level of significance
- v a value related to statistical power of test
- Bonferroni correction for multiple testing (adjust p)

significance	u/z _{alfa/2}	u/z _{alfa}
0,1	1,6449	1,2816
0,05	1,9600	1,6449
0,01	2,5758	2,3263
0,0125	2,5000	2,2400
0,005	2,8070	2,5758
0,0024	3,0357	2,8202
0,00125	3,2272	3,0233
0,001	3,2905	3,0902
0,0001	3,8906	3,7190
0,00001	4,4172	4,2649
	* two-tailed	* one-tailed

$(u+v)^2(\sigma_1^2+\sigma_2^2)$	
$(\mu_1 - \mu_2)^2$	

power [%]	u/z _{beta}
60	0,2533
70	0,5244
75	0,6745
80	0,8416
85	1,0364
90	1,2816
95	1,6449
* one-sided	value

Group size estimation: three groups; non-Gaussian distribution

Required information:

- expected means $(\mu_1; \mu_2; \mu_3)$
- expected spreads (σ_1 ; σ_2 ; σ_3)
- u a value related to level of significance
- v a value related to statistical power of test
- Bonferroni correction for multiple testing (adjust p)
- Add +15% to each group's N

significance	u/z _{alfa/2}	u/z _{alfa}
0,1	1,6449	1,2816
0,05	1,9600	1,6449
0,01	2,5758	2,3263
0,0125	2,5000	2,2400
0,005	2,8070	2,5758
0,0024	3,0357	2,8202
0,00125	3,2272	3,0233
0,001	3,2905	3,0902
0,0001	3,8906	3,7190
0,00001	4,4172	4,2649
	* two-tailed	* one-tailed

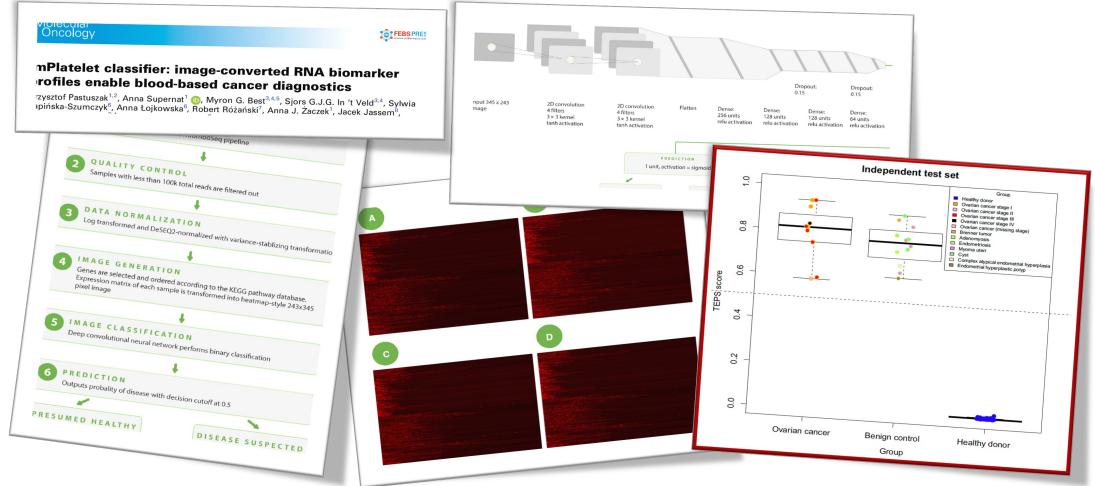
$(u+v)^2(\sigma_1^2+\sigma_2^2)$
$(\mu_1 - \mu_2)^2$

power [%]	u/z _{beta}	
60	0,2533	
70	0,5244	
75	0,6745	
80	0,8416	
85	1,0364	
90	1,2816	
95	1,6449	
* one-sided value		

Group size estimation: two proportions

Required information:

- expected proportions $(\pi_1; \pi_2)$
- OR, alternatively:
- expected proportion π_1 and effect size (OR, RR, ...)
- u a value related to level of significance
- v a value related to statistical power of test


	Females	Males	Total
Smoking	10	90	100
Non-smoking	110	30	140
Total	120	120	240

power [%]	u/z _{beta}	
60	0,2533	
70	0,5244	
75	0,6745	
80	0,8416	
85	1,0364	
90	1,2816	
95	1,6449	
* one-sided value		

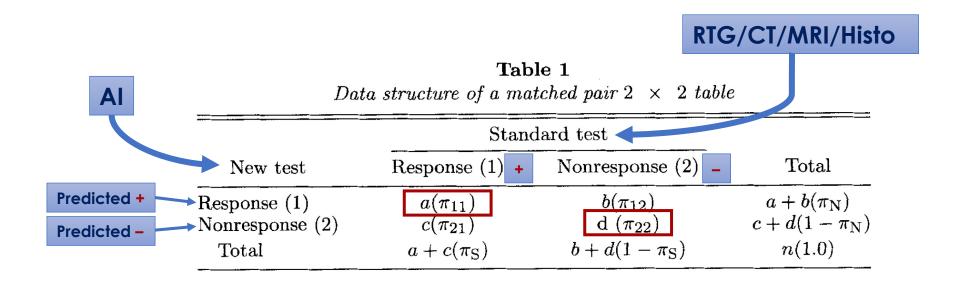
$$\frac{\{u\sqrt{[\pi_1(1-\pi_1)+\pi_2(1-\pi_2)]}+v\sqrt{[2\pi(1-\pi)]}\}^2}{(\pi_2-\pi_1)^2}$$

Group size estimation: more complex situation

Calculating the required study size for testing the new diagnostic tool (e.g. Al-based classifier)

Pastuszak. Molecular Oncology (2021) doi: 10.1002/1878-0261.13014

www.gumed.edu.pl


GDAŃSKI UNIWERSYTET MEDYCZNY

Group size estimation: more complex situation

GDAŃSKI UNIWERSYTET MEDYCZNY

Calculating the required study size for testing the new diagnostic tool (e.g. Al-based classifier)

- **paired** data
- data as proportions
- trying to prove **noninferiority** of the new diagnostic tool (that it is <u>not worse</u> compared to standard test)

Group size estimation: more complex situation

$$n_{\rm TS} = \begin{cases} \frac{z_{(1-\alpha)}\sqrt{(1+\delta_0)\bar{\pi}_{21} + (\delta_1\pi_{\rm S} + \pi_{21})(\delta_0 - 1)}}{(\delta_1 - \delta_0)\pi_{\rm S}} \\ + z_{(1-\beta)} \left\{ 2\delta_0\pi_{21} - \delta_0(1-\delta_0)\pi_{\rm S} \\ + (\delta_1 - \delta_0)\pi_{\rm S} [1 - (\delta_1 - \delta)\pi_{\rm S}] \right\}^{1/2} \\ + (\delta_1 - \delta_0)\pi_{\rm S} \\ \end{cases}^2 \cdot \frac{\min[(2-\delta_1)\pi_{\rm S}/2, (1+\pi_{\rm S})/2 - \delta_1\pi_{\rm S}] \text{ for } \delta_1 \leq 1}{\min[(1-\delta_1\pi_{\rm S})/2, \pi_{\rm S}/2] \text{ for } 1 < \delta_1 \leq 1/\pi_{\rm S}}$$

BIOMETRICS 58, 957–963 December 2002

> Sample Size Determination for Establishing Equivalence/Noninferiority via Ratio of Two Proportions in Matched-Pair Design

Man-Lai Tang,^{1,*} Nian-Sheng Tang,² Ivan Siu-Fung Chan,³ and Ben Ping-Shing Chan⁴

Group size estimation: more complex situation

Circulating tumour cells mRNA transcriptomics study

Q: how many reads should a differentially-expressed miRNA transcript have to provide reliable results?

<u>Assumptions</u>

- N = 5000 transcripts;
- DEG = 0.1; FDR = 0.1
- $\log(FC) = 0.5 (\sim 3.16x)$
- 4 and 10 subjects per group
- 6 and 15 subjects per group
- 8 and 20 subjects per group

What is the statistical power?

simulation: 50 iterations (**R**; proper package) (free)

Group size estimation: dynamic processes

<u>Literature</u>

- Area = $6.84 * e^{-0.124 * T}$
- $k_{T} = -0.124$ week⁻¹
- approx. 50% area reduction each 6 weeks

<u>Assumptions</u>

- 10% faster healing ($k_T = -0.138 \text{ week}^{-1}$)
- 80% statistical power
- 0.05 level of significance
- one-sided tests

What is the required group size?

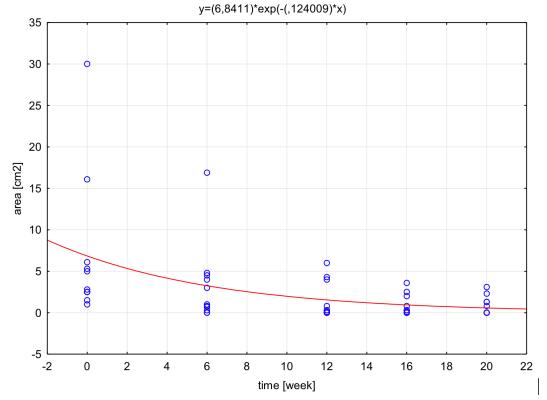


Fig. 1. Wound surface area reduction following the use of commercially available dressing [1]

GDAŃSKI UNIWERSYTET

Group size estimation: DIY solutions

- wymagana wielkość próby badanej

- dolna granica rzeczywistej czułość narzędzia AI

8

9 10

11

12

13

N_{TS} = 1390

π_N ≥ **0,711**

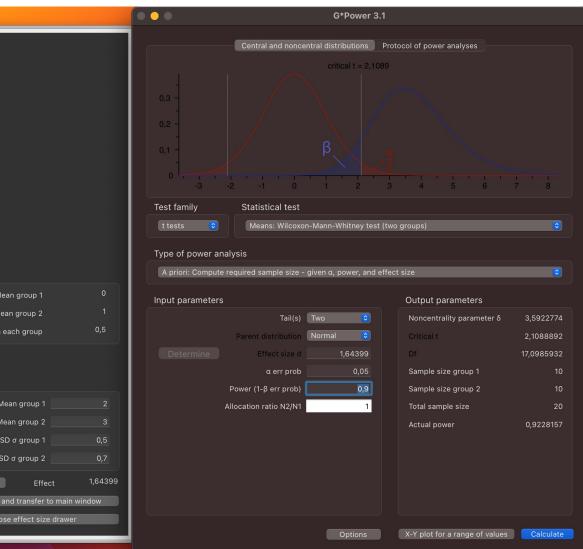
\$	GDAŃSKI
÷	UNIWERSYTET
1	MEDYCZNY

А	В	С		D	E	F	G	н	I	J	К	L	М	N	о	Р	Q	R	S	т	U	V
u =	0,8416			numerator =	228,69																	
v =	2,5000		d	enominator =	4,00				power [%]=	80		z _β =	0,8416					z _β =	0,8416			
ni1 =	3,000			N =	57,17				significance =	0,01		z _α =	2,5758	N =	103,0085			$z_{\alpha} =$	2,5758	N	= 103,0085	
ni2 =	1,000		N cor	retced to ro =	33,27							μ1 =	2					Δμ =	-1			
SD =	,			* covariates					two-tailed			μ2 =	1					σ=	2,1			
ro =	0,66											σ=	2,1									-
_																						4
ratio	-66,7%																					
								İΓ	power [%]=	80		z _β =	0,8416					z _β =	0,8416	i		
									significance =	0,0125		z _{α/2} =	2,2400	N =	83,75814			$z_{\alpha/2} =$	2,2400	_	= 83,75814	
								╎┕				μ1 =	2					Δμ =	-1			
								Г	one-tailed			μ ₂ =	1					σ=	2,1			
												σ=	2,1									
		A	В	С	D	E	F		G	н	1		J	К							L	
	1	A = 1	L,90	Exam	ple table		Sta	nda	rd test (S)				π _s =	0,790	- czułoś	ć standa	rdowega	testu di	iagnostyc	znego zas	sotosowanego	o u osc
	2	B = -	0,2501				+	•	-	total		AI	accuracy =				-			tandardo		
	3	C = 0	0,0064069			+	71	1	21	732	π _N		π ₂₁ =	0,0790								
	4 τ	$\tau_{21est} = 0$	0,0968	New	Al test (N)	-	79	9	189	268			π _N =	0,732	- spodzi	iewana R	ZECZYW	ISTA czu	ułość now	ego testu	ı w oparciu o	AI
	5					total	79		210	1000				0,90000						-	Al (czułość w	
		złon – (totai		-	210	1000									-		•	• •
		$z + lon_1 = 0$,				π	S						0,92658	- zakłac	iana rzec	zywista	czu10SC	względi	NA METOD	ly AI (czułość v	NZGIE
	7 cz	$z lon_2 = 0$),2554										δ =	0,93								

 $\pi_{N(lim)} = 0,711$ $\alpha = 0,05$

β = **0,80**

z_α = 1,6449


z_{1-β} = 0,8416

- pożądany poziom istotności

· pożądana moc statystyczna

Group size estimation: available software solutions

G*Power (free) _ **R** (pwr package) (free) a priori vs. a posteriori -> library(pwr) > pwr.t.test(n = NULL, d=1.64399, sig.level = 0.05, power = 0.80, alternative = "two.sided", type = "two.sample") Two-sample t test power calculation n = 6.91427d = 1.64399sig.level = 0.05power = 0.8Mean group 1 alternative = two.sided Mean group 2 NOTE: n is number in *each* group SD σ within each group ○ n1 = n2 Mean group 1 plot.power.htest Mean group 2 SD o group 1 SD σ group 2 Effect

Group size estimation: survival analysis

Required information

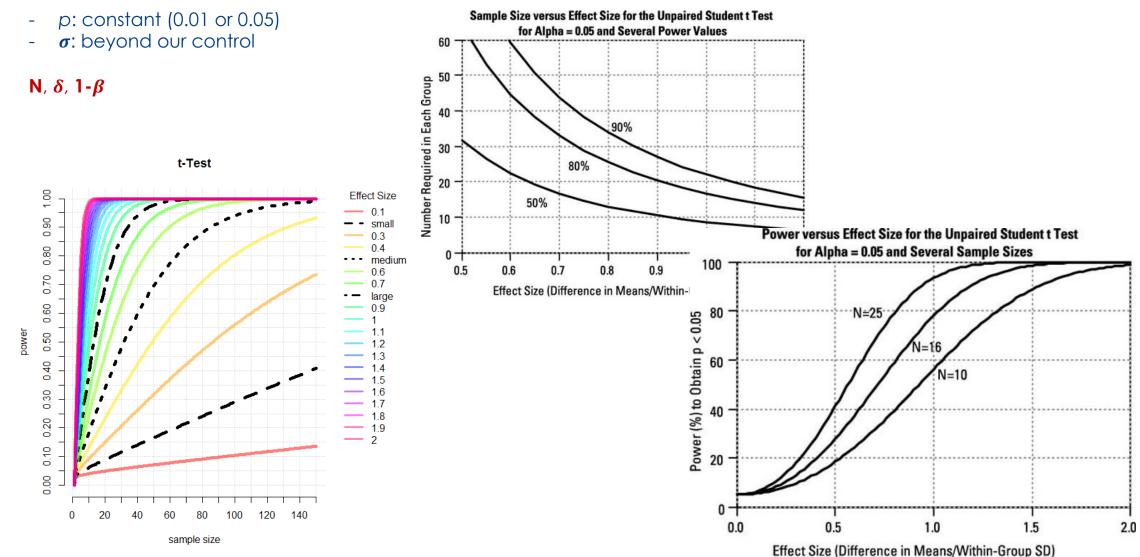
- expected Hazard Ratio (HR)
- proportion of exposed/unexposed subjects
- u a value related to level of significance
- v a value related to statistical power of test

Output

required number of events (!!!)

Home	Sample size	e – Surviv	al analysis					
Calculators	Two calculators for two-group survival analysis.							
CI for proportion								
CI for mean	Calculator 1: Number of events, given relative hazard.							
Means - effect size	Instructions: Enter below.	er parameters	in the green cells. Answers will appear in the blue box					
Means - sample size								
Proportions - effect size	α (two-tailed) =	0.05	Threshold probability for rejecting the null hypothesis. Type					
Proportions - sample size	β =	0.2	Probability of failing to reject the null hypothesis under the					
CI for proportion - sample size	р –	0.2	alternative hypothesis. Type II error rate.					
Survival analysis - sample size	q ₁ =	0.5	Proportion of subjects that are in Group 1 (exposed)					
Prevalence	q ₀ =	0.5	Proportion of subjects that are in Group 0 (unexposed); 1- q_1					
CI for risk ratio	RH =	1.6						
More calculators		1.0	Relative hazard (Group 1/Group 0)					
Calculator finder								
About calculating sample size		Calculate ev	rents					
About us	The standard por	mal deviate fo	r = 7 = 1.0600					
	The standard normal deviate for α = Z _{α} = 1.9600 The standard normal deviate for β = Z _{β} = 0.8416							
	$A = (Z_{\alpha} + Z_{\beta})^2 = 7.8$		P					
	$B = (log(RH))^2 q_0 q_0$							
	Total events nee	eded = A/B =	142					

GDAŃSKI UNIWERSYTET


Clinical & Translational

UCCE

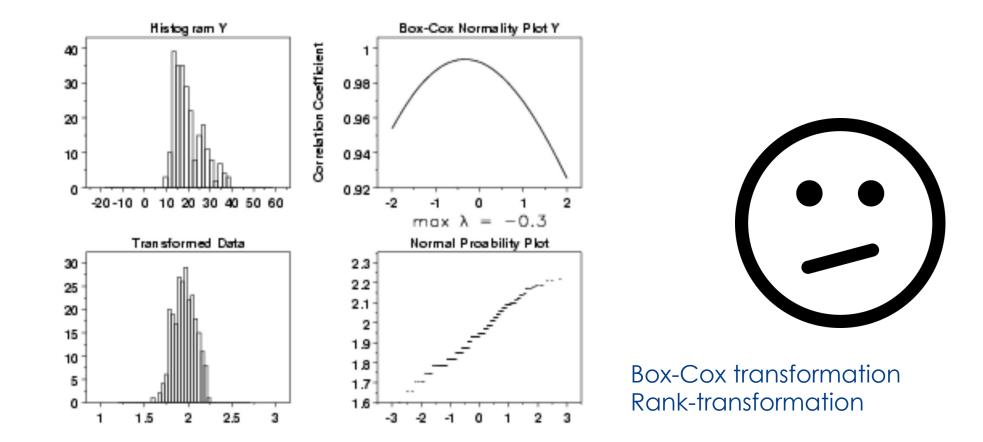
at UCSF

Explore the Training in Clinical Research Program

Group size estimation: graphical outputs interpretation **P**

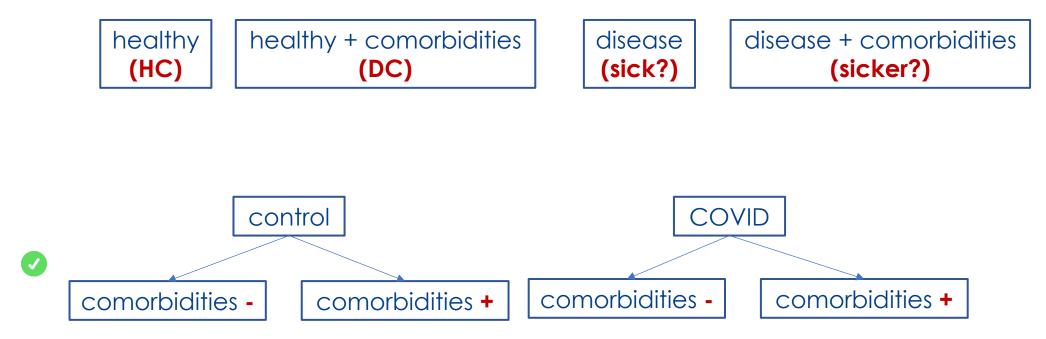
GDAŃSKI UNIWERSYTET MEDYCZN

Transformed data or non-parametric?


Situation	Transformation
right-skewed distribution	
lognormal more skewed than lognormal less skewed than lognormal	x' = log(x) x' = 1/x x' = sqrt(x)
left-skewed distribution	
moderately skewed more skewed	$ \begin{array}{l} \mathbf{x}' = \mathbf{x}^2 \\ \mathbf{x}' = \mathbf{x}^3 \end{array} $
nonhomogeneous variances	
SD proportional to means SD proportional to means ² SD proportional to sqrt(means)	x' = log(x) x' = 1/x x' = sqrt(x)
data as percentages (0-100%)	p' = arcsin(sqrt(p))
proportions (p, X/n, 0-1)	p' = arcsin(sqrt(p))

Watała: Biostatystyka - wykorzystanie metod statystycznych w pracy badawczej w naukach biomedycznych. *a*-medica press, Bielsko-Biała, 2002.

Transformed data or non-parametric?



Box, G. and Cox, D. (1964) An Analysis of Transformations. Journal of the Royal Statistical Society. Series B (Methodological), 26, 211-252.

Experimental design: selection of the control group

X More than just 1 control group

Additional advantages of the model (possible answers to various pre- or post-planned questions <u>within one analysis</u>)

Experimental design: multiple comparisons

Bonferroni correction

$p_0 = 1 - \sqrt[n]{1-p}$	$p_0 \sim$	p/n
---------------------------	------------	-----

N = 3 $p_0 \approx 0.016$ $p_0 \approx 0.005$ N = 10N = 30 $p_0 \approx 0.0017$

Very conservative, restrictive

FDR (Benjamini & Hochberg)

different logic less restrictive

Unjustified use of corrections relevant answer to question of no interest

J. R. Statist. Soc. B (1995) 57, No. 1, pp. 289-300

Controlling the False Discovery Rate: a Practical and Powerful **Approach to Multiple Testing**

By YOAV BENJAMINI† and YOSEF HOCHBERG

Tel Aviv University, Israel

[Received January 1993. Revised March 1994]

Education and debate

Medicine,

University of

Geneva 4, Switzerland

Thomas V

unige.ch

What's wrong with Bonferroni adjustments

Thomas V Perneger

Institute of Social When more than one statistical test is performed in and Preventive analysing the data from a clinical study, some statisticians and journal editors demand that a more Geneva, CH-1211 stringent criterion be used for "statistical significance" than the conventional P<0.05.1 Many well meaning researchers, eager for methodological rigour, comply Perneger, medical epidemiologis without fully grasping what is at stake. Recently, adjustments for multiple tests (or Bonferroni adjustments) Correspondence to: have found their way into introductory texts on medi-Dr Perneger cal statistics, which has increased their apparent legitiperneger@cm macy.2 5 This paper advances the view, widely held by epidemiologists, that Bonferroni adjustments are, at RMI 1998-316-1936-8 best, unnecessary and, at worst, deleterious to sound statistical inference.4

Adjustment for multiple tests

Bonferroni adjustments are based on the following reasoning.1-3 If a null hypothesis is true (for instance, two treatment groups in a randomised trial do not differ in terms of cure rates), a significant difference (P<0.05) will be observed by chance once in 20 trials. This is the type I error, or a. When 20 independent. tests are performed (for example, study groups are compared with regard to 20 unrelated variables) and the null hypothesis holds for all 20 comparisons, the chance of at least one test being significant is no longer 0.05, but 0.64. The formula for the error rate across the study is $1 - (1 - \alpha)^n$, where n is the number of tests performed. However, the Bonferroni adjustment deflates the *a* applied to each so the study-wide error rate remains at 0.05. The adjusted significance level is $1 - (1 - \alpha)^{1/n}$ (in this case 0.00256), often approximated by α/n (here 0.0025). What is wrong with this statistical

difference in remission rates between two chemotherapeutic treatments could be interpreted as statistically significant or not depending on whether or not survival rates, quality of life scores, and complication rates were also tested. In a clinical setting, a patient's packed cell volume might be abnormally low, except if the doctor also ordered a platelet count, in which case it could be deemed normal. Surely this is absurd, at least within the current scientific paradigm. Evidence in data is what the data say-other considerations, such as how many other tests were performed, are irrelevant.

Summary points

or use to researchers

it solves

performed

non-significant

Adjusting statistical significance for the number of

tests that have been performed on study data-the

Bonferroni method-creates more problems than

The Bonferroni method is concerned with the

general null hypothesis (that all null hypotheses

are true simultaneously), which is rarely of interest

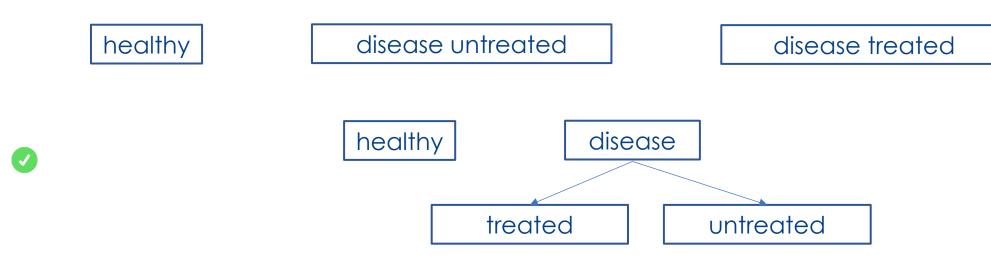
The main weakness is that the interpretation of a finding depends on the number of other tests

The likelihood of type II errors is also increased,

Simply describing what tests of significance have been performed, and why, is generally the best

way of dealing with multiple comparisons

so that truly important differences are deemed



www.gumed.edu.pl

GDANSKI UNIWERSYTET

Experimental design: several separate analyses or a model?

- Breaking down analyses into smaller partial analyses Multiple comparisons using the simplest possible tests (Student's t test) Required corrections for multiple testing (Bonferroni; FWER; FDR)
- Hierarchical (nested) designs ANOVA & post-hoc tests
 General Linear Model, General Additive Model, ...

GDAŃSKI UNIWERSYTET MEDYCZNY

Lack of appropriate test?

Permutation (randomization) tests

TABLE 18.4 DRP scores for third-graders										
Tre	eatment	group				Control g	group			
24	61	59	46		42	33	46	37		
43	44	52	43		43	41	10	42		
58	67	62	57		55	19	17	55		
71	49	54			26	54	60	28		
43	53	57			62	20	53	48		
49	56	33			37	85	42			

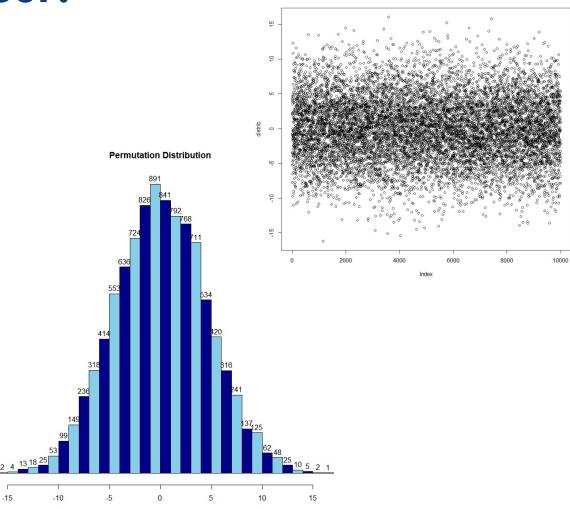
x_T - x_C = 51.472-41.522 = **9.954**

permutation	statistic
1	-0,7039
2	-1,2505
3	3,1221
4	-8,0828
5	2,1201
6	4,9441
7	-1,8882
8	-0,7039
9	-0,2484
10	-4,8033
max =	4,9441
n (higher) =	0
P {(n(higher) / [n(all)+1]} =	0,0000

24	Т	Т	С	С	т	Т	С	С	С	Т	С
43	Т	С	т	Т	T T	T C	C C	С	Т	T C	с с
58	т	т	т	C	т	С	С	т		С	Т
74			÷	C	T	č	ž		Т	-	÷
	т	С	Т	T C	C C	с	T C	C C	С	Т	T C
43	Т	С	Т		С	Т	С		Т	С	С
49	Т	С	Т	С	С	Т	Т	С	Т	Т	С
61	Т	Т	С	С	С		С	С	Т	Т	Т
44	Т	Т	С	С	Т	C C	C T	C T	Т	Т	T C C
67	т	Т	С	Т	С	С	С	С	Т	С	С
49	т	С	С	Т		С	С		Т	Т	С
53	т	С	Т	T T	T C	Т	C T	C C	С	с	т
56	т	č		T		o			т		C T C
50		2	C		C T	T	C	C		Т	2
29	Т	С	С	С	T C	T C	C T	C C	С	С	5
52	т	Т	С	Т	С			С	С	С	Т
62	Т	С	Т	С	Т	С	С	Т	С	Т	C T C
54	Т	Т	Т	Т	C	С	Т		Т	с	С
57	т	Т	С	T C	Т	C C T	T C	C T	T C	Т	C T C T C T
33	т	Т	С	Т	т	т	С	т	С	т	С
46	т		č				т		o		т
40	1000	C	-	C	T C	c		T T	Т	T	-
43	Т	С	С	С		Т	c		С	Т	C
57	Т	Т	Т	С	С	С	Т	Т	Т	Т	Т
42	С	Т	С	C C	Т	T T	T C T C T	C T	С	С	T T
43	С	Т	С	Т	т	т	т	т	Т	С	Т
55	С	С	т	Т	C		т	С	Т	С	С
26	С	т	т	С	c	C T T	T T T		С	т	C
62	c		c	т	c	÷	÷	T T	c	÷	č
02		С								Т	-
37	С	С	Т	Т	т			С	Т	Т	
33	С	Т	Т	T C	С	T C T	T C C	Т	Т	С	Т
41	С	Т	Т		С		С	С	С	С	C C T T C
19	С	Т	Т	С	Т	Т		Т	Т	С	С
54	С	Т	Т	С	С	Т	Т	С	Т	С	Т
20	С	т	С	С	С	T T	C T T	т	С	С	C T C
85	c		c	••••••	c		т	c	c	т	т
24 43 58 57 143 49 61 44 67 9 53 56 59 52 62 43 43 56 59 52 62 43 56 59 52 62 43 57 12 62 57 12 62 57 12 62 57 12 62 57 12 62 57 52 62 57 52 62 57 52 62 57 52 62 57 52 62 57 52 62 57 57 52 62 57 57 57 57 57 57 57 57 57 57	c	C C		C C	č	C C T	T T C	т	Č		T C T C T T C C C T
10			C		C	T	-	T T	C	T T	-
10	C	С	Т	С	T	-	-		С		-
17	С	Т	Т	Т	Т	с	Т	Т	С	С	T
60	С	С	С	T T	T T	С	T C	Т	Т	С	С
53	С	Т	С	Т	Т	Т	С	Т	Т	Т	Т
42	С	С	С	С	С	С	С	С	С	С	Т
37	С	Т	С	Т	С	Т	Т	С	С	С	С
42	c	c	т	T T	c	T T	T C	c	С	с с	C
74							T				T
22	С	С	Т	Т	T	С	Т	Т	Т	С	
28	С	C C	с	T C	Т	с	с	С	С	с	T T
48	С	C	Т	C	Т	С	С	Т	С	Т	Т

Lack of appropriate test?

800


600

200

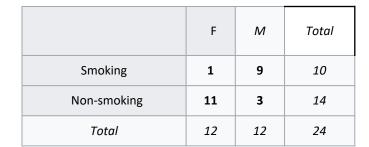
400

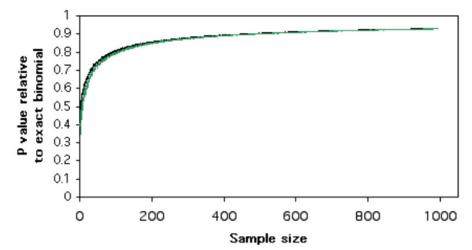
Permutation (randomization) tests

no permuations	max stat.	n (higher)	p (n higher / n all)
10	4,9441	0	0,0000
50	13,4162	1	0,0200
100	10,7743	2	0,0200
200	13,5073	3	0,0150
500	16,4224	9	0,0180
1000	12,8696	11	0,0110
10000	16,6957	129	0,0129
50000	18,6998	699	0,0140
100000	17,6977	1409	0,0141
500000	18,6087	6912	0,0138
		t-test	0,0264
		rang-sum	0,0127

x(T)-x(C)

Hesterberg T & Monaghan, Shaun & S Moore, David & Clipson, Ashley & Epstein, Rachel & H Freeman, W & New York, Company. (2005). Bootstrap Methods and Permutation Tests. Introduction to the Practice of Statistics. 14.


A permutation test: Fisher's exact test


Fisher's exact test

- an example of commonly used permutation test
- alternative to Pearson's chi-squared test
- if the count in any cell is below 5
- but...

For every test in the case of which some statistic is being computed (t, z, F, chi2, ...) there is also a permutation version thereof

Instead of comparing the calculated value of test statistic against the values in the corresponding tables, one can compared it against the distribution obtained empirically en route resampling

P values of chi-square and *G*-tests, as a proportion of the *P* value from the exact binomial test.

www.biostathandbook.com/small.html (5/06/2019)

What is your result?

p-value vs. effect size

p-value <u>is not</u> your result

it only tells how reliable your observed effect size is it only tells how often you're about to see the same effect size in repeated experiment

Effect size is your result

are the changes biologically relevant? are the changes clinically relevant?

Publish or parish

striving for "p-value"

nonsignificant results are not being published

sufficient power must be shown in order to publish results with p>0.05

An example: Data Torturing

StatSoft Polska

DARE WIEDZA SUKCES.PL

"IF YOU TORTURE THE DATA LONG ENOUGH, IT WILL CONFESS" – NAUKOWA DOCIEKLIWOŚĆ A *DATA TORTURING* NA PRZYKŁADZIE PRACY KLINICZNEJ Z ZAKRESU RADIOTERAPII ONKOLOGICZNEJ

Bartłomiej Tomasik Zakład Biostatystyki i Medycyny Translacyjnej, Uniwersytet Medyczny w Łodzi

GDAŃSKI UNIWERSYTET MEDYCZNY

Data torturing

StatSoft Polska

DAREWIEDZASUKCES.PL

"IF YOU TORTURE THE DATA LONG ENOUGH, IT WILL CONFESS" – NAUKOWA DOCIEKLIWOŚĆ A *DATA TORTURING* NA PRZYKŁADZIE PRACY KLINICZNEJ Z ZAKRESU RADIOTERAPII ONKOLOGICZNEJ

Bartłomiej Tomasik Zakład Biostatystyki i Medycyny Translacyjnej, Uniwersytet Medyczny w Łodzi

Aim: Assessment of the impact of IMRT radiotherapy on the development of xerostomia in patients with Head and Neck Cancer

A questionnaire survey + salivary gland scintigraphy Searching for risk factors of severe xerostomia (grade 3/4) one year after IMRT

The power analysis: assumed statistical power of 80% assumed level of significance of 5%

~ 100 subjects per group (control; study) data collection should take 2 years

2 years of data collection

- only 53 subjects
- 30 scintigraphic examinations
- 40 questionnaires

a posteriori power analysis: < 20 % (max I)

< 20 % (max **!**)

So what about it now?

Analyse? Continue collecting data?

Zmienna	Kategoria	Liczba (%)
Pleć	Kobiety	12 (22,64%)
	Mężczyźni	41 (77,36%)
	T1	1 (1,89%)
Casha T	Τ2	20 (37,74%)
Cecha T	Т3	24 (45,28%)
	Τ4	8 (15,09%)
	N0	33 (62,26%)
Cecha N	N1	6 (11,32%)
	N2	14 (26,42%)
	Krtań/gardło dolne	25 (47,17%)
Lokalizacja guza	Jama ustna/gardło środkowe	28 (52,83%)
	Tak	30 (56,60%)
Pelne badanie scyntygraficzne	Nie	23 (43,40%)
Wypełnione kwestionariusze	Tak	40 (75,47%)
QLQ H&N-35	Nie	13 (24,53%)

Tabela 1. Charakterystyka grupy włączonej do badania.

Xerostomia severity (degree) vs. risk group (location)

- Fisher's exact test
- p=0.048 (!)
- one-sided test (!)
- trying to find an argument for usage of one-sided test post factum
- it was not taken into account while planning the experiment

Lakalizacia	Podsumowująca tabela dwudzielcza					
Lokalizacja	Kserostomia ≥3	Kserostomia <3	Wiersz - razem			
Krtań/gardło dolne	4	16	20			
%kolumny	28,57%	61,54%				
%wiersza	20,00%	80,00%				
%ogółu	10,00%	40,00%	50,00%			
Jama ustna/gardło środkowe	10	10	20			
%kolumny	71,43%	38,46%				
%wiersza	50,00%	50,00%				
%ogółu	25,00%	25,00%	50,00%			
Kolumna - razem	14	26	40			
% z całej grupy	35,00%	65,00%	100,00%			
Dokładny jednostronny test Fishera	p=0,048					

Tabela 2. Podsumowująca tabela dwudzielcza z wynikami testu Fishera dla porównania występowania nasilonej kserostomii w zależności od grupy ryzyka.

Some of the questionnaires were repeated after several years

Q Cochran's test

- p=0.083
- observable trend (!?)
- initial lack of statistical power
- decreasing number of subjects in analysis
- one-sided test (!) (trying to find an argument post factum)

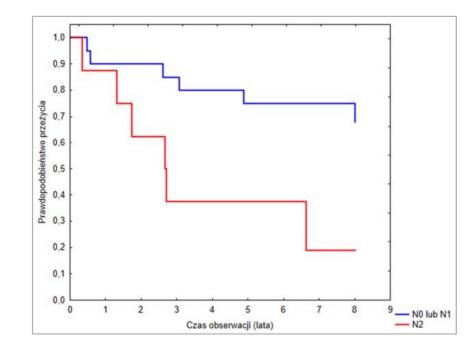
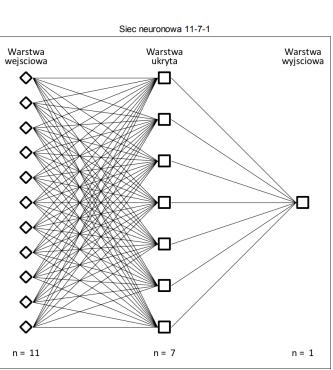
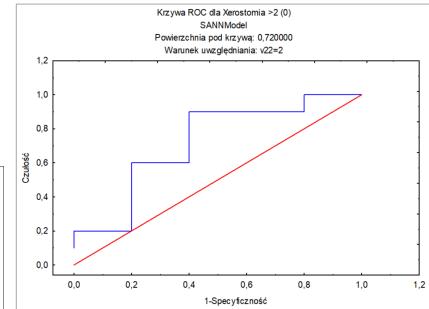

Lakalizasia	Podsumowująca tabela dwudzielcza						
Lokalizacja	Kserostomia ≥3	Kserostomia <3	Wiersz - razem				
Pierwsze badanie ankietowe	6	9	15				
%kolumny	40,00%	60,00%					
%wiersza	40,00%	60,00%					
%ogółu	20,00%	30,00%	50,00%				
Drugie badanie ankietowe	9	6	15				
%kolumny	60,00%	40,00%					
%wiersza	60,00%	40,00%					
%ogółu	30,00%	20,00%	50,00%				
Kolumna - razem	15	15	30				
% z całej grupy	50,00%	50,00%	100,00%				
Test O Cashrana	Q=3,00						
Test Q Cochrana	p=0,083						

Tabela 3. Wyniki testu Q Cochrana porównującego subiektywną ocenę kserostomii w pierwszym i drugim badaniu ankietowym.

A survival analysis was planned in addition

- the log-rank test
- after several trials and divisions of the whole study groups into subgroups, a statistically significant result was obtained (p=0.021)
- researchers were satisfied ©
- have they planned the survival analysis?
- have they checked whether the study provides enough power for survival analysis?


	Oceny parametrów		
	Poziom efektu	Poziom p	HR (95%CI)
Zajęcie węzłów chłonnych	N2	0,021	3,92 (1,24-12,45)


Rys. 6. Krzywe Kaplana-Meiera przedstawiające różnice w przeżyciu w zależności od zajęcia węzłów chłonnych oraz tabela z wynikami analizy proporcjonalnego hazardu Coxa.

Searching for predictors of xerostomia worsening

- several ROC curve analyses
- no success, therefore the authors used neural networks (11 L₀ neurones; 7 layers)
- obtained network provided accuracy of 80% and 0.72 area u the curve (AUC)
- researchers were fully satisfied $\ensuremath{\textcircled{}}$
- lack of interpretability?

Problems

- excessive optimism in the planning phase regarding data collection (not taking into account that some patients may not meet the inclusion criteria)
- very low statistical power
- analyses within subgroup that were not previously planned (additional subdivisions of groups)
- conducting previously unplanned analyses (survival analysis, ROC analysis)
- multiple hypotheses testing without appropriate corrections
- abuse of more and more complicated analytical methods in order to prove the assumed thesis ("hypothesis driven science"; Fisher's test → Neural Network)
- the blind pursuit of statistically significant results without considering their clinical significance

What should we do?

- it cannot be avoided
- But we should be cautious to:
- were the other (new?) hypotheses made before or during the experiment?
- were all the subgroup analyses planned in advance, prior to experiment?
- are all the obtained results related to the main hypothesis of the study?
- is it not necessary, at lease in the case of some statistical tests, that appropriate multiple testing corrections be applied?

Thanks for your attention...

Literature

CO MOŻNA WYCISNĄĆ Z TYCH DANYCH?

Andrzej Stanisz, Collegium Medicum Uniwersytetu Jagiellońskiego w Krakowie, Zakład Biostatystyki i Informatyki Medycznej

JAK SKUTECZNIE WYKORZYSTYWAĆ METODY STATYSTYCZNE W PLANOWANIU I PRZEPROWADZANIU EKSPERYMENTU NAUKOWEGO?

Cezary Watała, Uniwersytet Medyczny w Łodzi, Zakład Zaburzeń Krzepnięcia Krwi KDL; Uniwersytecki Szpital Kliniczny nr 2 im. WAM

JAK PLANOWAĆ DOŚWIADCZENIA NAUKOWE Z WYKORZYSTANIEM METOD STATYSTYCZNYCH? TESTOWANIE HIPOTEZ STATYSTYCZNYCH: MIĘDZY MOCĄ STATYSTYCZNĄ A NIEMOCĄ DECYZYJNĄ

Cezary Watała, Uniwersytet Medyczny w Łodzi, Zakład Zaburzeń Krzepnięcia Krwi; Uniwersytecki Szpital Kliniczny nr 2 im. WAM GDAŃSKI UNIWERSYTET MEDYCZNY

5

Review paper

Sample size and significance – somewhere between statistical power and judgment prostration

Cezary Watała

Department of Haemostatic Disorders, Medical University of Lodz, Poland

Submitted: 14 November 2006 Accepted: 17 December 2006

Arch Med Sci 2007; 3, 1: 5-13 Copyright © 2006 Termedia & Banach

Corresponding author:

Prof. Cezary Watała Department of Haemostatic Disorders Medical University of Lodz Medical University Hospital No. 2 113 Zeromskiego Street 90-549 Lodz, Poland Phone: +48 42 6393471 Fax: +48 42 6787567 E-mail: cwatala@csk.umed.lodz.pl

Abstract

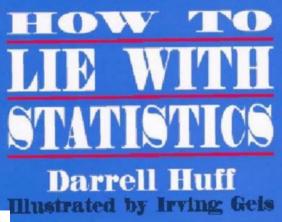
When performing scientific research we are so "embraced" to use the tool of inductive logic in our reasoning that we often express more generalized opinions on the population of interest based on relatively small sample(s) of a general population. What we take care about in such situations is that chosen segments are representative for a whole set of elements in the general population. To cope with such a demand we always want to know how large our selected subpopulation should be to enable us to detect the experimental effect of interest not only at a certain level of significance, but also with the highest possible power of statistical reasoning. Thus, when designing our experiment, we have to compromise between a sample size not too small to ensure that our sample is sufficiently representative, and not too large to benefit from the sampling procedure at all. The tools for the estimation of minimum required sample size and the analysis of power, which help us to make quick decisions on how to compromise reasonably between significance, statistical power and sample size, are discussed in this paper.

Literature

Biostatystyka

wykorzystanie metod
 statystycznych w pracy badawczej
 w naukach biomedycznych

a-medica press




Cezary Watała

upelinia, danit Andrzej Stanis Andrzej Stanisz Przystępny kurs statystyki Przystępny kurs statystyki TATISTICA PL z zastosowe z zastosowaniem STATISTICA PL Przystępny kurs statystyki z zasłosowaniem STATISTICA PL na przykładach z medycyny om 3. Anolizy wielowy

Kroków 2012

Over Half a Million Copies Sold-An Honest to Goodness Bestseller